If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=13
We move all terms to the left:
c^2-(13)=0
a = 1; b = 0; c = -13;
Δ = b2-4ac
Δ = 02-4·1·(-13)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*1}=\frac{0-2\sqrt{13}}{2} =-\frac{2\sqrt{13}}{2} =-\sqrt{13} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*1}=\frac{0+2\sqrt{13}}{2} =\frac{2\sqrt{13}}{2} =\sqrt{13} $
| (10.235)(0.277)=(x)(8.315)(293.15) | | 7+3x+5-4+3=40 | | 2x+12=4(2x+6) | | -2(6f-1)=-5/3(3f+15)+6 | | x/6+4/3=-1/3 | | 4(6x+5)=2x+10 | | 16a-14a-a+a-a=8 | | -(9+8d)=23+6(-2d) | | –11m=–8m−18 | | x+8+17=90 | | 15t+4t-15t-2t=20 | | 6x+5+32-8=90 | | x+12+16=90 | | 11z+4z-11z=16 | | 8(x+0)=35 | | 3(0.75x-4)=2(0.333x-6) | | 11a-8a+a-a-a=12 | | 8-(2u+7)=u+40 | | -5(7x+2)=5(2-7x) | | 7x=13x–12 | | 1/3=1/4-1/2y | | 19j-18j=20 | | 24=8*h | | x/8-1/2=-1/2 | | 5a+8−a+4= | | s+25=4s+30 | | 11/4w-4=12 | | x+4x(5x+65)=180 | | (x4)(x4)=x0 | | 27=b+-5 | | 11x-5+3x=2(7x-8) | | 5(2d-3)=3(d-19) |